IngredientsOils & Fats & Shortenings

New Varieties of Fats and Oils Promise to Solve Product Development Challenges, Boost Nutrition

Optimizing texture and flavor in plant-based meat alternatives is driving innovation in product development

May 3, 2021
Karen Nachay, MS

Fats and oils enhance texture, carry flavor and improve mouthfeel. New technology is improving the functionalities of fats while lowering their caloric load.

The explosion of plant-based meat and dairy analogs has created a paradigm shift in the ways food product developers are considering fats and oils. There’s plenty of innovation around plant-based meat alternatives, especially as they expand beyond burgers, sausages, and poultry into mimics of bacon, pork, and even such highly specific items as turkey burgers.
Optimizing the texture, flavor, appearance, cooking experience, and other qualities of these and other items to be as close to their animal counterparts as possible to meet increasingly exact consumer expectations has pushed innovation to new levels.
An integral part of this is in the choice of fat ingredients used in formulating plant-based animal product alternatives. For example, in red meat analogs, singular or customized blends of oils, shortenings, flakes, specialty fat fractions, and emulsifiers help create structure, sizzle, juiciness and tenderness, and affect the product’s browning and flavor-release characteristics. For the flavor itself, the blends can be tailored to hit desired savory and umami sensations.
Derived from sources including coconut, sunflower seeds, safflower seeds, canola, soybean, and palm, these ingredients improve both the cooking and eating properties described above, plus other functions, such as oil release, in plant-based meat substitute products. Solid fats being employed in these efforts range from bulk oils to 3D particulates and flakes.
These help to form the look and structure of fat pockets in the product matrix, while semi-solid blends of fats and oils are formulated to have the ratios of saturated to unsaturated fatty acids found in actual meat applications. Single-source oils come in coconut, sunflower, canola, and palm and can be used on their own or blended to help provide particular attributes to the finished product or to meet specific nutritional requirements.
Something to consider when it comes to the choice of fat ingredients in plant-based animal product substitutes is the consumer demand for ingredients perceived as “less processed.” To that end, simple blends of familiar oils are used. However, in some formulations, these blends might not provide the desired functionalities. Manufacturers will have to use more processed solutions, produced using interesterification or full hydrogenation.
An alternative fat ingredient was just launched that allows food manufacturers to “dramatically reduce calories” while promising to maintain the flavor and texture of the original food and beverage product. The ingredient recently received additional GRAS approval from the FDA for use in a new set of foods and beverages, including dairy analogs, plant-based protein products, beverages and beverage bases (including coffee- and tea-based beverages), and snack foods (such as corn-based savory snacks, potato chips, and chicken nuggets).
The new fat replacer already has been approved for use in multiple formulations, ranging from baked goods and mixes to frozen dairy and desserts to confections and bars. It also has been approved for peanut and nut butters, spreads and dips, gravies and sauces, grain products, pastas, and frying applications.
Unlike other fat replacers, which are commonly carbohydrate-based, the new fat replacer is produced from oils, specifically non-GMO rapeseed oil, and other common plant oils. The lipids are split into glycerol and fatty acids, then a food-grade propoxyl link is inserted, and the glycerol and fatty acids are recombined to create an alternative fat. The addition of the propoxyl in between the glycerol and fatty acids prevents digestive enzymes from breaking it down, so the body does not completely digest it. It delivers 0.7kcal/g vs. the 9 kcal/g from digestible fats. 
The resulting 92% reduction of calories from fat for each unit of fat replaced can cut total calories in a formulation by up to 45%. The new ingredient is trans-fat-free, is supported by more than 60 studies, and can be safely consumed in quantities of up to 150g/day. Most importantly, unlike previous (and infamous) attempts at lipid-based nondigestible fat replacers, it does not produce any gastrointestinal side effects. On food labels, it may appear as “modified plant-based oil.”
Even though manufacturers of fat and oil ingredients have developed an array of successful replacements for partially hydrogenated oils (PHOs), and solutions that are lower in saturates, that doesn’t mean their work is done. Various techniques and proprietary technologies are ushering in a new wave of both PHO-free and low-saturates options that promise to bring improved functionalities to bakery products. Two types of shortenings illustrate this.
One range of shortenings has come out that was specifically designed to produce PHO-free icings. It performs comparatively to those made with PHOs, and is based on a combination of high-oleic oils and a hard fat source made from soybean and cottonseed oils. A proprietary functional crystallization process is used to control the size of the fat crystals and produce shortenings with longer stability and usability. 
Icings made with the new shortening deliver better stability across a range of temperatures and are easy to work with even after being subjected to freeze/thaw cycles. Another benefit of the PHO-free shortenings is they can be used to make colored icings that won’t bleed or run.
Reduced-saturates shortenings made without hydrogenated oils are generating more interest in the food industry. With manufacturers striving to formulate products with less saturated fat and no hydrogenates, these shortenings are formulated from blends of soybean oil and a special selection of emulsifiers processed using the same proprietary functional crystallization process as the PHO-free shortenings. The resulting shortening can produce a workable dough that builds volume in bakery goods and helps them retain moisture.
Oils made from nuts and seeds continue to gain wider use in food and beverage formulations. The functionalities and health benefits of these oils, from almond, walnut, peanut, and sunflower to chia, hemp, flax, and other seeds are well documented. Fats from tree nuts, seeds, and grains also are used in milk and dairy analogs, especially those from high-fat/high-protein nuts such as cashews, coconuts, and walnuts. They can deliver a customizable variety of textures that make them ideal for soft cheese, yogurt, and frozen dessert analogs.
There are a couple of up-and-coming nut oil sources worth noting, as they are specifically being cultivated for greater use in food and beverage development. One is the pili nut, native to the Philippines. In a 2015 study published in the Journal of Ethnic Foods, researchers determined that pili nut oil is high in unsaturated fats, particularly oleic acid.
The baru nut is the second new source to appear on the food ingredient radar. Actually a seed from a tree grown in the Brazilian savannah, it too boasts a healthful fatty acid composition. A 2018 study published in Food Chemistry revealed that mayonnaise formulated with microencapsulated baru oil had increased levels of polyunsaturated fatty acids.
Success for both of these new sources depends on overcoming sustainability, availability, and supply hurdles. As every plant contains oil, and as technology for viable and inexpensive extraction of the lipid fractions improves (especially from upcycled product left over from extraction of other useful components), the near future should see many new plant oils come on the market.
Karen Nachay, MS, is a writer and researcher covering food and beverage trends, ingredients, culinary developments, and cutting-edge science. She holds a Master of Science degree in food science and nutrition from the University of Illinois at Urbana-Champaign and has worked as a writer and editor for food science magazines and other outlets. Nachay also has extensive professional experience in product development labs for multiple ingredient manufacturers. She may be reached at or through this magazine.